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Why replace DFT with ML?
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What is QSAR?



4 © Fujitsu 2023FUJITSU-PUBLIC

Why replace DFT with ML?

●Because it should be much faster to compute
●To test our ML methodology on reasonable data
●Why not?
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Materials and Methods
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The data – QM9

Properties calculated by B3LYP

R. Ramakrishnan, P. O. Dral, M. Rupp, O. 

A. von Lilienfeld, Quantum chemistry 

structures and properties of 134 kilo 

molecules, Scientific Data 1, 140022, 2014.

These molecules correspond to the subset of 
all 133,885 species with up to nine heavy atoms 
(CONF) out of the GDB-17 chemical universe of 
166 billion organic molecules. 

https://moleculenet.org/datasets-1
Molecules with extreme values rejected – top 
and bottom 1%

https://moleculenet.org/datasets-1
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The steps to build QSAR model

●Convert chemistry to mathematics
●Train and validate the model
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Convert chemistry to mathematics

●Use Morgan fingerprint descriptors
●They are fast
●They are robust
●They are well-proven

https://www.rdkit.org/UGM/2012/Landrum_RDKit_UGM.Fingerprints.Final.pptx.pdf
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Morgan Fingerprint is…
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…a lot of empty space
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Hashing - bits
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Hashing - counts
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Time to learn…

TseKiChun, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons

Random Forest 
Regressor
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…and to judge!

Internal Split K-Fold Cross-Validation Using R² in Regression involves dividing the dataset into k
subsets, or "folds," and then performing multiple iterations of training and validation to ensure that the
model generalizes well to unseen data.

Steps in K-Fold Cross-Validation
1.Data Splitting: The dataset is randomly divided into k equal-sized folds.
2.Model Training and Validation: For each fold, the model is trained on k-1 folds and validated on the
remaining fold. This process is repeated k times, with each fold serving as the validation set once.
3.Performance Evaluation: The performance metric, such as R² (coefficient of determination), is
calculated for each iteration. The overall performance is typically assessed by averaging the metric
across all folds.

R² in Regression
R² is a statistical measure that represents the proportion of the variance for a dependent variable that's
explained by an independent variable or variables in a regression model. It provides an indication of how
well the model predictions fit the actual data. In the context of k-fold cross-validation, R² is computed
for each fold, and the average R² across all folds is used as an indicator of the model's performance.

perplexity.ai
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The toolbox

●python.org
● rdkit.org
● scikit-learn.org
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Results
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The winners and the losers

General Guidelines for R² Values

Physical Sciences: In fields like physics or chemistry, where processes are often well-understood
and measurements are precise, R² values are typically expected to be high, often above 0.9. This
reflects a strong relationship between the variables and a high degree of predictability

Social Sciences: In social sciences, such as psychology or sociology, the data often involve
complex human behaviors that are harder to predict. Here, lower R² values are more common,
and an R² as low as 0.1 can be considered acceptable if the predictors are statistically
significant. This is because the focus is often on understanding the impact of specific variables
rather than achieving high predictive accuracy.

Life Sciences: In fields like biology or ecology, the acceptable R² threshold can vary widely. For
some studies, especially those involving complex biological systems, R² values might be lower
due to inherent variability and complexity

perplexity.ai
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The summary

R2 bits R2 counts
Dipole moment 0.719 0.727
Isotropic polarizability 0.606 0.804
Energy of HOMO 0.839 0.865
Energy of LUMO 0.958 0.968
HOMO - LUMO gap 0.948 0.956
Electronic spatial extent 0.742 0.816
Zero point vibrational energy 0.857 0.971
Internal energy at 0K 0.682 0.813
Internal energy at 298.15K 0.682 0.813
Enthalpy at 298.15K 0.683 0.813
Free energy at 298.15K 0.682 0.813
Heat capacity at 298.15K 0.740 0.873
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Dipole Moment
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LUMO Energy
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Isotropic polarizability
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Zero point vibrational energy
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Conclusions?
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Is ML worth it?

• It works reasonably, for most cases.
• Counts of fingerprints are better than bits!
• There still is room for improvement… I hope.
• It’s FAST!
• 15 minutes to compute all the descriptors for whole data set
• All models were created and evaluated overnight on desktop

• It’s simple.
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The easy, lazy way…

www.scigress.com
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Thank you!

chemistry@fqs.pl
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Molecular Weight


