

Machine Learning Models for fast estimation of *electronic and thermodynamic* properties of small molecules

Wojtek Plonka FQS Poland w.plonka@fqs.pl

Why replace DFT with ML?

What is QSAR?

International Journal of Quantitative Structure-Property Relationships Volume 1 • Issue 1 • January-June 2016

The History and Development of Quantitative Structure-Activity Relationships (QSARs)

John C. Dearden, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK

ABSTRACT

It is widely accepted that modern QSAR began in the early 1960s. However, as long ago as 1816 scientists were making predictions about physical and chemical properties. The first investigations into the correlation of biological activities with physicochemical properties such as molecular weight and aqueous solubility began in 1841, almost 60 years before the important work of Overton and Meyer linking aquatic toxicity to lipid-water partitioning. Throughout the 20th century QSAR progressed, though there were many lean years. In 1962 came the seminal work of Corwin Hansch and co-workers, which stimulated a huge interest in the prediction of biological activities. Initially that interest lay largely within medicinal chemistry and drug design, but in the 1970s and 1980s, with increasing ecotoxicological concerns, QSAR modelling of environmental toxicities began to grow, especially once regulatory authorities became involved. Since then QSAR has continued to expand, with over 1400 publications annually from 2011 onwards.

Because it *should* be much faster to compute
To test our ML methodology on reasonable data
Why not?

Materials and Methods

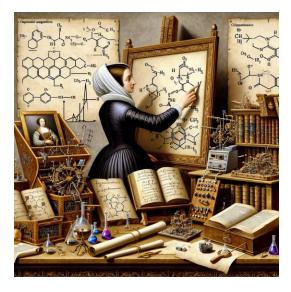
The data – QM9

Properties calculated by B3LYP

https://moleculenet.org/datasets-1

Molecules with extreme values rejected – top and bottom 1%

These molecules correspond to the subset of all 133,885 species with up to nine heavy atoms (CONF) out of the GDB-17 chemical universe of 166 billion organic molecules.

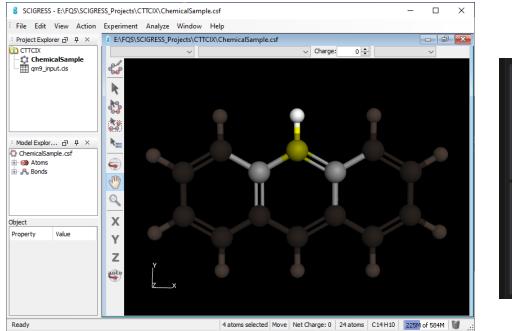

R. Ramakrishnan, P. O. Dral, M. Rupp, O. A. von Lilienfeld, Quantum chemistry structures and properties of 134 kilo molecules, Scientific Data 1, 140022, 2014.

μ	D	Dipole moment					
α	a_0^3	Isotropic polarizability					
€ _{НОМО}	Ha	Energy of HOMO					
€ _{LUMO}	Ha	Energy of LUMO					
$\epsilon_{\sf gap}$	Ha	Gap (є _{LUMO} – є _{HOMO})					
$\langle R^2 \rangle$	a_{0}^{2}	Electronic spatial extent					
zpve	Ha	Zero point vibrational energy					
Uo	Ha	Internal energy at o K					
U	Ha	Internal energy at 298.15 K					
Н	Ha	Enthalpy at 298.15 K					
G	Ha	Free energy at 298.15 K					
Cv	$\frac{cal}{molK}$	Heat capacity at 298.15 K					

The steps to build QSAR model

Convert chemistry to mathematics
Train and validate the model

Convert chemistry to mathematics


• Use Morgan fingerprint descriptors

- They are fast
- They are robust
- They are well-proven

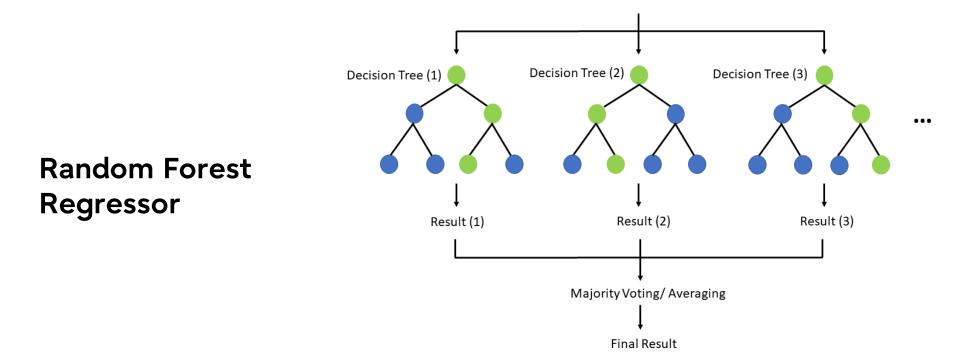
https://www.rdkit.org/UGM/2012/Landrum_RDKit_UGM.Fingerprints.Final.pptx.pdf

Morgan Fingerprint is...

⊳ ×	<pre>mol = Chem.MolFromSmiles('c1ccc2cc3cccc3cc2c1') info = {} fp = AllChem.GetMorganFingerprint(mol, radius = 1, fp = fp.GetNonzeroElements() fp</pre>
[11]	√ 0.0s
	<pre>{98513984: 4, 951226070: 4, 994485099: 2, 2360741695: 4, 3217380708: 4, 3218693969: 10}</pre>

...a lot of empty space

Hashing - bits


Hashing - counts

Time to learn...

TseKiChun, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via Wikimedia Commons

Internal Split K-Fold Cross-Validation Using R^2 in Regression involves dividing the dataset into k subsets, or "folds," and then performing multiple iterations of training and validation to ensure that the model generalizes well to unseen data.

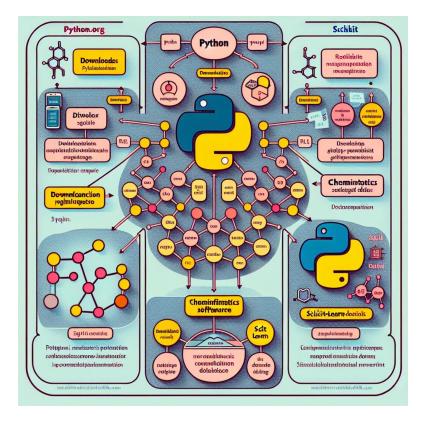
Steps in K-Fold Cross-Validation

1.Data Splitting: The dataset is randomly divided into *k* equal-sized folds.

2.Model Training and Validation: For each fold, the model is trained on *k*-1 folds and validated on the remaining fold. This process is repeated *k* times, with each fold serving as the validation set once.

3.Performance Evaluation: The performance metric, such as R² (coefficient of determination), is calculated for each iteration. The overall performance is typically assessed by averaging the metric across all folds.

R² in Regression


R² is a statistical measure that represents the proportion of the variance for a dependent variable that's explained by an independent variable or variables in a regression model. It provides an indication of how well the model predictions fit the actual data. In the context of k-fold cross-validation, R² is computed for each fold, and the average R² across all folds is used as an indicator of the model's performance.

perplexity.ai

The toolbox

python.org rdkit.org scikit-learn.org

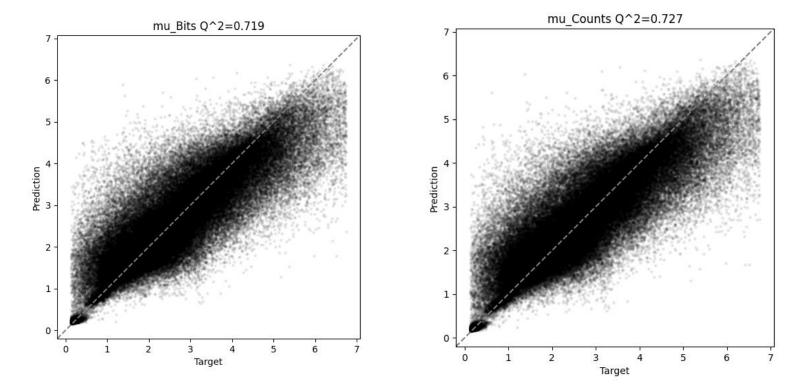
Results

General Guidelines for R² Values

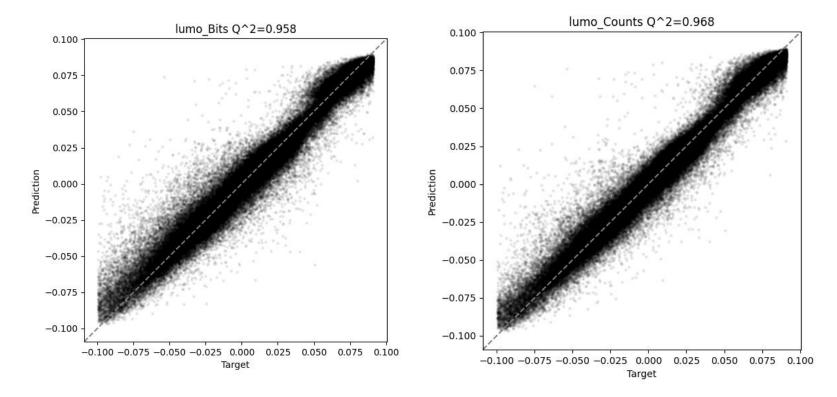
Physical Sciences: In fields like physics or chemistry, where processes are often well-understood and measurements are precise, R² values are typically expected to be high, often above **0.9**. This reflects a strong relationship between the variables and a high degree of predictability

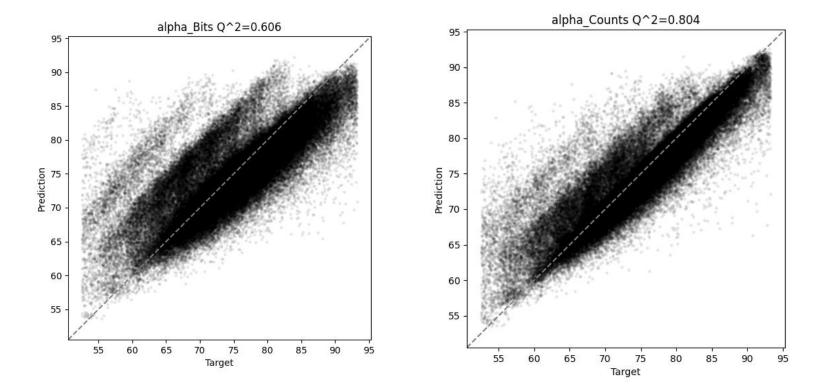
Social Sciences: In social sciences, such as psychology or sociology, the data often involve complex human behaviors that are harder to predict. Here, lower R² values are more common, and an R² as low as **0.1** can be considered acceptable if the predictors are statistically significant. This is because the focus is often on understanding the impact of specific variables rather than achieving high predictive accuracy.

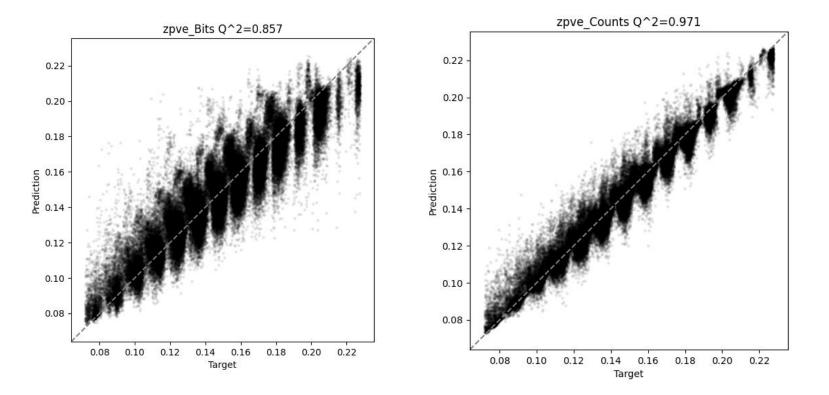
Life Sciences: In fields like biology or ecology, the acceptable R² threshold can vary widely. For some studies, especially those involving complex biological systems, R² values might be lower due to inherent variability and complexity


perplexity.ai

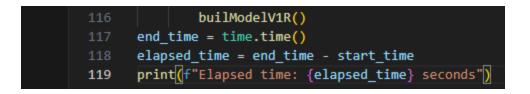
	R ² bits	R ² counts
Dipole moment	0.719	0.727
Isotropic polarizability	0.606	0.804
Energy of HOMO	0.839	0.865
Energy of LUMO	0.958	0.968
HOMO - LUMO gap	0.948	0.956
Electronic spatial extent	0.742	0.816
Zero point vibrational energy	0.857	0.971
Internal energy at OK	0.682	0.813
Internal energy at 298.15K	0.682	0.813
Enthalpy at 298.15K	0.683	0.813
Free energy at 298.15K	0.682	0.813
Heat capacity at 298.15K	0.740	0.873


Dipole Moment


LUMO Energy


Isotropic polarizability

Zero point vibrational energy

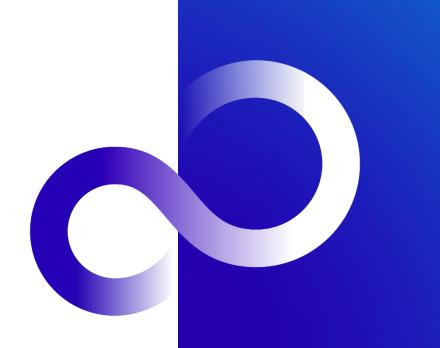


Conclusions?

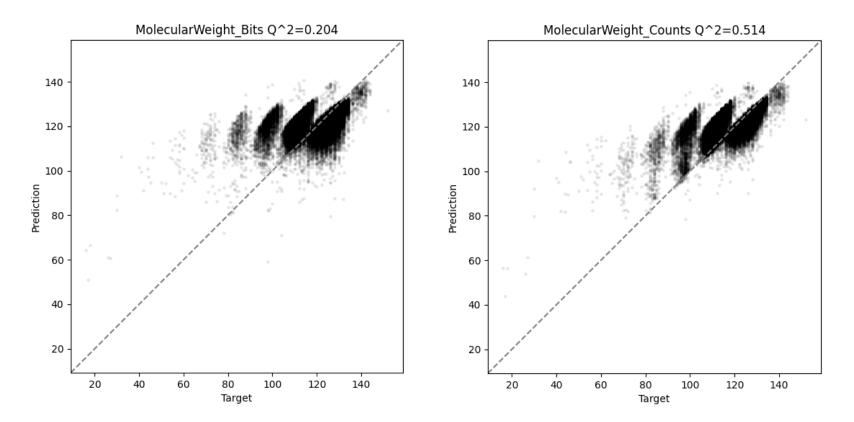
- It works reasonably, for most cases.
- Counts of fingerprints are better than bits!
- There still is room for improvement... I hope.
- It's FAST!
 - 15 minutes to compute all the descriptors for whole data set
 - All models were created and evaluated overnight on desktop
- It's simple.

The easy, lazy way...

SCIGRESS


www.scigress.com

Project Explor	ar	ағ×	EVEOS/SCIGR	ESS_Projects\CTTCl	Vam0	input cis					[- 6
		<u> </u>			_emp/~			lumo				
am9_input			sample name	molecule		Train Random		lumo	020	e)	70//0	
			sample_0232	CC#CC(N)=O		🔋 Irain Kandom	Forest					
			sample_0233	CC#CC(C)C		Search Strategies -						
			sample_0234	CC#CC(C)O		Approximate sea	arch (quid	0				
			sample_0235	C#CCC(C)=O		0						
			sample_0236	CC(=O)CC#N		 Thorough search 	n (time-co	nsuming)				
			sample_0237	C#CCC(N)=O		Complex months	110000					
			sample_0238	N#CCC(N)=O		Samples processed: Samples processed:						
			sample_0239	CC(=N)NC=O		Samples processed:						
			sample_0240	CC(=N)OC=O		Samples processed:						
Model Explore	r	a e ×	sample_0241	CC(=0)CC=0		Samples processed:	123000					
	sample_0242	CC(=O)NC=N		Samples processed:								
	sample_0243	CC(=O)NC=O		Samples processed:								
		sample_0244	CC(=O)OC=N		Samples processed: Samples processed:							
			sample_0245	N=C(N)NC=O		Samples processed: Samples processed:						
			sample_0246	NC(=O)CC=O		Samples processed:						
			sample_0247	N=CNC(N)=O		Samples processed:						
			sample_0248	NC(=O)NC=O		Samples processed:	131000					
			sample_0249	N=COC(N)=O		Samples processed:						
			sample_0250	C#CCC(C)C		Samples processed:	133000					
)bject			sample_0251	CC(C)CC#N		True Ouick hyperparemete						
Property	Value		sample_0252	C#CCC(C)O		Random Forest Regre			he built			
			sample_0253	CC(O)CC#N		Starting hyperparame						
			sample_0254	CN(C)CC#N		E16 F256 S2 L1 ****						
			sample_0255	CC(C)CC=O		-	-	-				
			sample_0256	CC(C)NC=O		<						>
			sample_0257	CC(C)OC=0				Start	Cancel	Close		
			sample_0258	CC(0)CC=0		-						
			sample_0259	CN(C)CC=O			.201	0.0202	0.2010	/22.1700	0.123003	207.00
			<		>	<						>


Thank you!

chemistry@fqs.pl

Molecular Weight

